Asymptotic solitons for a higher-order modified Korteweg-de Vries equation.
نویسنده
چکیده
Solitary wave interaction for a higher-order modified Korteweg-de Vries (mKdV) equation is examined. The higher-order mKdV equation can be asymptotically transformed to the mKdV equation, if the higher-order coefficients satisfy a certain algebraic relationship. The transformation is used to derive the higher-order two-soliton solution and it is shown that the interaction is asymptotically elastic. Moreover, the higher-order phase shifts are derived using the asymptotic theory. Numerical simulations of the interaction of two higher-order solitary waves are also performed. Two examples are considered, one satisfies the algebraic relationship derived from the asymptotic theory, and the other does not. For the example which satisfies the algebraic relationship the numerical results confirm that the collision is elastic. The numerical and theoretical predictions for the higher-order phase shifts are also in strong agreement. For the example which does not satisfy the algebraic relationship, the numerical results show that the collision is inelastic; an oscillatory wavetrain is produced by the interacting solitary waves. Also, the higher-order phase shifts for this inelastic example are tabulated, for a range of solitary wave amplitudes. An asymptotic mass-conservation law is derived and used to test the finite-difference scheme for the numerical solutions. It is shown that, in general, mass is not conserved by the higher-order mKdV equation, but varies during the interaction of the solitary waves.
منابع مشابه
A Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملForced oscillations of a damped Korteweg-de Vries equation on a periodic domain
In this paper, we investigate a damped Korteweg-de Vries equation with forcing on a periodic domain $mathbb{T}=mathbb{R}/(2pimathbb{Z})$. We can obtain that if the forcing is periodic with small amplitude, then the solution becomes eventually time-periodic.
متن کاملImplication of Quantum Effects on Non-Linear Propagation of Electron Plasma Solitons
We have studied the electron exchange-correlation effect on thecharacteristics of the two-component unmagnetized dense quantum plasma withstreaming motion. For this purpose, we have used the quantum hydrodynamic model(including the effects of a quantum statistical Fermi electron temperature) for studyingthe propagation of an electrostatic electron plasma waves in such th...
متن کاملConstructing new periodic exact solutions of evolution equations.
For the nonlinear Schrödinger equation, the Korteweg-de Vries equation, and the modified Korteweg-de Vries equation, periodic exact solutions are constructed from their stationary periodic solutions, by means of the Bäcklund transformation. These periodic solutions were not written down explicitly before to our knowledge. Their asymptotic behavior when t-->-infinity is different from that when ...
متن کاملAdomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation
Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 66 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2002